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ABSTRACT
We consider the problem of implementing scalable three-
dimensional fast Fourier transforms with an eye toward fu-
ture exascale systems comprised of graphics co-processor
(GPUs) or other similarly high-density compute units. We
describe a new software implementation; derive and cali-
brate a suitable analytical performance model; and use this
model to make predictions about potential outcomes at ex-
ascale, based on current and likely technology trends. We
evaluate the scalability of our software and instantiate mod-
els on real systems, including 64 nodes (192 NVIDIA“Fermi”
GPUs) of the Keeneland system at Oak Ridge National Lab-
oratory. We use our analytical model to quantify the impact
of both inter- and intra-node communication that impede
further scalability. Among various observations, a key pre-
diction is that although inter-node all-to-all communication
is expected to be the bottleneck of distributed FFTs, it is
actually intra-node communication that may play an even
more critical role.

1. INTRODUCTION
The considerable interest in graphics co-processors (GPUs)
for high-end computing systems raises numerous questions
about performance, for both application developers and sys-
tem architects alike. In essence, relative to current CPU-
only clusters, GPUs imply clusters with fewer nodes hav-
ing much higher per-node compute-densities than previously
seen. However, this shift in compute density poses new chal-
lenges for overall scalability, both within the node and across
the entire system.

In this paper, we ask what impact such a change will have on
algorithm design and implementation, in the specific context
of the three-dimensional fast Fourier transform (3D FFT).
In nearly all modern implementations, the main communi-
cation step is an all-to-all exchange. As such, one would

reasonably expect network bandwidth to dominate all other
performance factors, especially at exascale.

Contributions. Contrary to this intuition, we argue that it
is actually the intra-node design that may play the more crit-
ical role, under business-as-usual assumptions. This claim
is not just true today, where, unsurprisingly, relatively slow
I/O bus communication (i.e., PCIe) can dominate perfor-
mance. Rather, the surprise is that in the long-run, PCIe
does not matter because current technology trends suggest
that it is intra-node memory bandwidth actually scales more
slowly than either I/O bus or network bandwidth.

To build this argument, this paper makes what we believe
are three contributions to our current understanding of the
role high-density compute nodes will have on future 3D FFT
algorithms and implementations, summarized as follows.

1. Software: To better understand the impact GPU-
enabled nodes will have on the 3D FFT, we first port
the P3DFFT library [15, 40] to GPUs, and study its
performance on two of the major United States-based
GPU clusters.1 P3DFFT uses the so-called pencil de-
composition, making our GPU port the first pencil-
-based 3D FFT for a GPU cluster. Pending review of
this paper, we will release this port as a set of open-
source (GPL) patches to P3DFFT, which we refer to as
DiGPUFFT (pronounced “dig-puffed,” for Distributed
GPU FFT ).

2. Modeling: Based on this implementation, we cre-
ate an analytical performance model that accounts for
computation and both inter- and intra- node commu-
nication. The inter-node terms can account for topol-
ogy; the intra-node terms include memory bandwidth,
cache, and I/O-bus (PCIe) effects, giving us a basis for
studying how performance changes as machine param-
eters vary; how alternative 3D FFT algorithms might
behave; and what the future may hold (below). We
instantiate and validate this model experimentally on
existing systems.

1Namely, the Tesla C1060-based Lincoln system at National
Center for Supercomputing Applications (NCSA) as well as
the M2070 “Fermi”-based Keeneland system at Oak Ridge
National Laboratory (ORNL).
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3. Predictions: Using our model, we consider trends in
architecture and FFT performance over the past 20-30
years and make a number of predictions about what
we might expect approximately ten years hence, at ex-
ascale. One possible surprise is that even if the GPU
were to remain a discrete device, it is actually mem-
ory bandwidth rather than I/O-bus bandwidth (today,
PCIe) that is likely to be the intra-node limiter, bar-
ring certain memory technology changes as discussed
below.

Limitations. Among our claimed contributions, we acknowl-
edge several limitations.

First, our DiGPUFFT software does not employ novel al-
gorithms per se. However, for GPU-based systems, it is a
novel implementation, relative to the current state-of-the-
art PKUFFT [6]. In particular, DiGPUFFT uses the much
more scalable pencil decomposition rather than the slab de-
composition of PKUFFT; and we evaluate DiGPUFFT on
up to 192 NVIDIA “Fermi” GPUs on 64 nodes with QDR
Infiniband of Keeneland, achieving roughly 700 Gflop/s on a
large problem size, compared to 32 GPUs on 16 nodes and 1
GigE at 120 Gflop/s for PKUFFT. More importantly, DiG-
PUFFT is the concrete basis for our performance model and
predictions study.

Secondly, our model omits several factors that could play key
roles in future systems. Chief among these are microscope
memory and network contention effects, which we account
for implicitly through parameter calibration. The net effect
of this simplification is that our estimates are likely to be
optimistic, as we show when we try to validate the model.

Lastly, regarding our predictions, we recall Niels Bohr’s fa-
mous quote that,“Prediction is very difficult, especially about
the future.” Indeed, some of these predictions rely criti-
cally on business-as-usual trends that is subject to dramatic
shifts. We do discuss some specific threats to validity, includ-
ing, for instance, viability and impact of stacked memory on
intra-node FFT performance. Our main purpose in making
any predictions at all is to influence the future rather than
to obtain the “strictly correct answer.”

2. RELATED WORK
There is a flurry of current research activity in performance
analysis and modeling, both for exascale in general and in
particular for the 3D FFT algorithms and software at all
scales of parallelism. Our paper most closely follows three
recent studies.

The first study is the other major currently published dis-
tributed memory GPU 3D FFT code by Chen et al. [6], as
mentioned in Section 1.

The second study is by Pennycook et al., who also consider
inter- vs. intra-node communication issues in the context of
the NAS-LU benchmark (parallel wavefront stencil), lever-
aging their earlier empirical modeling work [42]. Our model
is by contrast more explicit about particular intra-node pa-
rameters, such as bandwidth, cache size, and I/O bus fac-

tors, and so our model adds improved algorithm-architecture
understanding relative to this prior work.

The third study is Gahvari’s and Gropp’s theoretical anal-
ysis of feasible latency and bandwidth regimes at exascale,
using LogGP modeling and pencil/transpose-based FFTs as
one benchmark [21]. Their model is more general than ours
in that it is agnostic about specific architectural forms at
exascale; however, ours may be more prescriptive about the
necessary changes by explicitly modeling particular archi-
tectural features in making our projections.

Beyond these key studies, there is a vast literature on 3D
FFTs [2–4, 7, 9–12, 17, 18, 22, 24, 26, 32, 44, 45, 47]. We call
attention to just a few of these. For large problem sizes, the
speed record is roughly 10-11 Tflop/s (1D) on the Cray XT5
and NEC SX-9 machines [1]. At our performance level (≈
700 Gflop/s), the closest report is for a 2005 Cray XT3 run,
which used over 5000 nodes (and one processor per node) [1]
compared to our 64 nodes and 3 GPUs per node. For rela-
tively small problem sizes, the most impressive strong scal-
ing demonstration is the 323 run on the Anton system, which
uses custom ASIC network chips and fixed-point arithmetic,
completing a 323 3D FFT in 4 µs (614 Gflop/s) [47], which
our code can only attain for relatively much larger problem
sizes (see Section 4).

Among the other 3D FFT implementations, there are two
broad classes that complement and would improve our work.
The first class considers highly-optimized all-to-all imple-
mentations with a variety of sophisticated tricks like non-
blocking asynchronous execution, overlap, and off-loading [12,
28, 29], which might improve our implementations by 10-
30%.2 The second class of implementations are single GPU
FFTs, which are a building block for our code [23, 38, 39].
However, at present we believe from experiment and com-
parison to published results that the current NVIDIA imple-
mentation on which we rely compares well with these other
approaches.

3. BACKGROUND ON THE 3D FFT
The vast majority of modern FFT implementations use some
variation of the standard Cooley-Tukey algorithm. The clas-
sical parallel algorithms are the binary exchange and trans-
pose algorithms [34]. The basic high-level trade-off between
them is that, in 1D, the binary exchange method on p pro-

cessors sends O (log p) messages of total volume O
(

n
p

log p
)

words, compared to the transpose algorithm’s O (p) mes-

sages of total volume O
(

n
p

)
, ignoring overlap. (Recall from

Section 2 that overlap may result in up to 10-30% improve-
ments in practice.) Thus, we expect better performance
from the transpose algorithm at large n, where we will be
bound by network- or memory-bandwidth; and just the op-
posite for small n, where we expect to be latency bound.

Of these, nearly all modern parallel 3D FFT implementa-
tions use the transpose algorithm, for which there are two
major variants: the so-called slab and pencil decomposi-
tions. We illustrate these variants in Figure 1.

2There are 2× demonstrations of improvement in the collec-
tive itself for very slow networks [13].
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Figure 1: Parallel N3 3D FFT data distribution over
p processors [31]

In the slab approach, the data is partitioned into 2D slabs
along a single axis. For example, to compute aN∗N∗N FFT
on p processors, each processor would be assigned a 2D slab
of sizeN∗N∗(N/p). Although this method helps in reducing
communications costs, “...the scalability of the slab-based
method is limited by the number of the data elements along
a single dimension of the three-dimensional FFT” [15], as a
1283 3D FFT scales to just 128 processors.

In the pencil approach, we partition the data into 1D pencils
to overcome the scaling limitation inherent in FFT libraries
based on the 1D (or slab) decomposition [41]. For example,
to compute a N ∗ N ∗ N FFT on p1 ∗ p2 processors, each
processor would be assigned a 1D pencil of size N ∗ (N/p1)∗
(N/p2). This approach increases scalability in the maximum
number of processors capable of being used to N2, for an
N3 size FFT, compared to a maximum of N processor in
the slab decomposition. In contrast to the slab approach,
pencils enables scaling a 1283 FFT, up to 1282 = 16, 384
processors [15].

4. P3DFFT AND DIGPUFFT
The Parallel Three-Dimensional Fast Fourier Transform li-
brary, or P3DFFT, implements the distributed memory trans-
pose algorithm using a pencil decomposition [41]. P3DFFT
is freely available under a GPL license. A major use of
P3DFFT is for a Direct Numerical Simulation (DNS) tur-
bulence application for the 32,768 core Ranger cluster (at
TACC).

P3DFFT version 2.4 serves as the basis for our DiGPUFFT
code. On each node P3DFFT computes local 1D FFTs us-
ing third party FFT libraries, which by default is FFTW,
though IBM’s ESSL and Intel’s MKL may serve as drop-
in replacements. For DiGPUFFT, we developed a custom
CUFFT wrapper for use within P3DFFT, making CUFFT
an additional local FFT option. Pending the review of this
paper, we will release DiGPUFFT as open-source software
on Google Code.

4.1 Performance Results
We performed our experiments with P3DFFT and DiG-
PUFFT on Keeneland, a National Science Foundation Track
2D Experimental System based on the HP SL390 server
accelerated with NVIDIA Tesla M2070 GPUs. Keeneland

has 120 compute nodes, each with dual-socket, six-core In-
tel X5660 2.8 GHz Westmere processors and 3 GPUs per
node, with 24GB of DDR3 host memory. Nodes are in-
terconnected with single rail, QDR Infiniband. Unless oth-
erwise specified, results were measured using the following
software stack: Intel C/C++ Compiler version 11.1, Open-
MPI 1.4.3, and NVIDIA CUDA 3.2.

Figure 2: Accounting for the time spent during DiG-
PUFFT/P3DFFT. Results are from a 64 node run
on the Keeneland cluster with a problem size of
20483, and 3 MPI tasks per node

We summarize the performance of off-the-shelf P3DFFT and
DiGPUFFT in Figure 3, which shows transform sizes of 2563

to 20483 run on 32 and 64 nodes in Keeneland, at either 2
and 3 MPI tasks per node. For the P3DFFT/CPU runs, we
configure P3DFFT to use FFTW in multithreaded mode.
We make several observations:

• Doubling nodes (p) from 32 to 64 roughly doubles per-
formance, showing strong scaling across nodes.
• Increasing the number of GPUs per node from 2 to

3 delivers ≈ 30% performance improvement, showing
strong scaling within a node.
• The win from GPU over CPU is modest and may be

below expectations, showing just roughly 10% to 20%
improvements.
• There is a performance cross-over point between the

CPU vs. GPU implementations, which reflects the
GPU memory transfer overhead.
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Figure 3: DiGPUFFT performance on an N ×N ×N FFT problem, using p nodes of Keeneland with q MPI
tasks per node. The CPU curves are MPI + multithreaded FFTW; GPU curves use CUFFT on a total of
p · q GPUs.

• The CPU’s performance levels off more quickly than
the GPU’s performance, showing at least some modest
scalability improvements due to the use of GPUs.

At smaller FFT sizes such as 2563, the CPU outperforms the
GPU, due partly to the CPU still doing the local transposes,
and the high cost of host-to-device memory transfers, as
shown in Figure 2. As the FFT sizes grow, the GPU’s faster
compute time quickly overcomes this additional overhead.
We analyze Figure 2 in the following sections.

4.2 Memory Constraints
NVIDIA’s high-end GPUs provide up to 6 GB of memory,
significantly less than typical host memory sizes. For large
data-sets, memory space can become a scarce commodity.
For FFT kernels, GPU memory must hold the frequency
values as well as the O (n) “twiddle factors” that are gen-
erated with the CUFFT planning procedures. Such plans
mimic the equivalent construct in FFTW. A plan generated
by CUFFT for an FFT of size n will use 168 MB of over-
head plus an additional O (n) bytes to store the twiddle
factors. For DiGPUFFT, this memory constraint limits the
number of plans that can be precomputed or overlapped be-
cause there is not enough memory to store them all for the
duration of the FFT calculation.

As Figure 2 shows, 1.3% of the time along the critical path
is spent computing the CUFFT plans. An additional 1.6%
of the time is spent allocating and de-allocating memory on
the GPU to accommodate the different pencil batch sizes
used during the FFT computation. With enough memory
to compute all of the plans and allocate all of the blocks
ahead of time, we would expect to see a 3% speedup. More

GPU memory would also make it possible to run FFTs with
larger pencil lengths.

4.3 PCIe Bottleneck
Figure 2 also shows that 52% of the time along the critical
path is spent transferring frequency values from the host
memory to GPU memory then transferring the computed
results back to host memory before transferring them across
the network.

Consider the 1D FFT using the transpose algorithm of size
n with p GPUs. During the first phase, n/p words are trans-
ferred across the PCIe bus to the GPU memory, a local FFT
is computed on the n/p values, and the resulting n/p values
are transferred back across the PCIe bus to the host mem-
ory. Using the peak bandwidth of the PCIe bus (βPCIe=8
GB/s) and the peak GPU computational throughput for a
local FFT (Cfft=380 Gflop/s; see Table 1), we can calculate
the effective computation time for the GPU, Tcufft:

Tcufft(n) =
5n logn

Ccufft
+ 2

n

βPCIe
(1)

versus the time for the time for the CPU version, which does
not involve transfers across the PCIe bus:

Tfftw(n) =
5n logn

Cfftw
(2)

Comparing Tcufft(n) and Tfftw(n) for realistic values of n,
(210 ≤ n ≤ 230), we observe that the effective speedup of the
GPU is only 2.1× to 3.8×, significantly less than the 14×
speedup suggested by Table 1. In fact, the GPU only reaches
the Ccufft peak reported in Table 1 on a few special-case
values of n. For most values of n, the GPU only achieves a
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small fraction of Ccufft and no value of n greater than 4096
achieves more than 240 Gflop/s.

Single Core of a
CPU

One GPU

Model 6-core Intel
X5660 2.8 GHz

NVIDIA Tesla
M2070

FFT Software FFTW 3.2.1 CUFFT 3.2
Hardware
Peak

22.4 Gflop/s 1030 Gflop/s

Observed
FFT Peak

4.7 Gflop/s 338 Gflop/s

Table 1: Local FFT Performance: CPU vs GPU

The model is more complicated when there are multiple
GPUs on the node. Spafford et al. have shown that GPU�CPU
memory transfer bandwidth is impacted by the locality of
the CPU and GPU [27]. For example, a memory transfer
between the wrong GPU-CPU pair can be up to 31% slower
than a transfer between properly paired GPU-CPU. Fig-
ure 4 shows the hardware layout of a node in the Keeneland
cluster.

Core0 Core1

Core2 Core3

CPU 1

D
R

AM

1

Infiniband

0 1

2 3

CPU 2

D
R

AM

QPI

DDR3 QPI I/O 
hub

I/O 
hub

QPI

integrated

PCIe x16

PCIe x16

PCIe x16

GPU 1

GPU 2

GPU 3

Node

Figure 4: Architecture of a Keeneland node

We first verify the experimental results of Spafford et al. [27],
and then extend them to show the measured bandwidth
across various host and device combinations using a stan-
dard ping-pong bandwidth test. Table 2 reports the results.

The key observation from the Table 2 is that intra-node
communication does not necessarily scale evenly as extra

Bandwidth
(GB/s)

CPU 1 � GPU 1 6.0
GPU 2 � GPU 3 4.7

CPU 1 � GPU 2/3 4.6
GPU 1 � GPU 2/3 4.1

Table 2: Intra-node NUMA costs in the Keeneland
architecture

devices and processors are added. Spafford et al. intro-
duced the notion of path length. We see that the band-
width between CPU1 and GPU2 is bounded by the same
PCIe bus bandwidth as GPU1 to CPU1 communication, and
the longer path also impacts its bandwidth. Although, we
discuss in Section 6, the good news is that the PCIe band-
width bottleneck is likely to improve in the near future. In
fact, early development in MVAPICH-GPU, a MPI imple-
mentation that will allow direct communication between the
GPU and network interface, has already shown a 45% per-
formance improvement over the indirect cudaMemcpy() +
MPI Send [46].

4.4 Local Transpose
In addition to the local FFT, each node must also compute a
local transpose to reshuffle the data. This operation can be
a costly because it involves loading and storing nearly every
value in the local data set. Indeed, our results show that
this step can be as costly as the local FFT itself. Other FFT
implementations have shown similar relative costs [17, 47].

Chen et al. describe a clever technique to embed the lo-
cal transpose into GPU-to-host and host-to-GPU transfers,
thereby hiding the cost of the local transpose [6]. This can
lead to a significant speedup over a GPU implementation
that perform the transpose in a separate step. Looking
forward, we expect the newly developed “GPUDirect” fea-
tures, which make it possible to send data directly from one
GPU’s memory to a remote GPU’s memory, will eliminate
the costly host-to-GPU and GPU-to-host steps. Unfortu-
nately, at present our implementation does not yet take ad-
vantage of the embedded transpose, and due to GPU mem-
ory constraints performs all local transposes on the CPU.

5. MODELING COMMUNICATION COSTS
5.1 Analytical Model
We consider the model of the 3D FFT using the pencil de-
composition of the transpose method with p nodes and prob-
lem size N = n3. We consider the communication costs
incurred both within the node and between nodes.

5.1.1 Intra-node Communication
In the pencil decomposition (Section 3), there are n2 1D
FFTs of length n distributed evenly among the p nodes.
Using the Cooley-Tukey recursive formulation of the DFT,
there are approximately 5n logn floating point operations
in a 1D FFT of length n. In total, the 1D FFTs must be
computed 3 times, once for each dimension, for a total of
3n2

p
1D FFTs per node. The time to compute these FFTs is

the total number of floating point operations divided by the
peak computation throughput C0, in flops per unit time.

Tflops = 3×

(
n2

p

)
5n logn

C0
(3)

During the FFT, each data point must be loaded and stored
from memory at least once. For a local 1-dimensional cache-
oblivious FFT [20], the number of cache misses grows on the
order of Sort(n) = Θ(1+(n/L)(1+logZ n)), where Z and L
are the cache and line sizes [19]. As computational through-
put continues to outpace memory performance, we expect
intra-node performance to adhere to this lower-bound.
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CPU GPU CPU GPU in
Today Today 10 years 10 years

Model (ms) (ms) (ms) (ms)
Tflops 71 6 .1 .1
Tmem 224 13 19 1
Tcomm 229 229 11 11

Table 3: Example model times for a given machine

The n3

p
data points on the node also need to be reshuf-

fled before being exchanged with other nodes. This step is
the local transpose step. The time for these memory access
is the number of memory accesses divided by the memory
bandwidth βmem.

Thus, for some constant A and sufficiently large n, a 3D
FFT will incur the following memory costs within a node:

Tmem = 3× n2

p
· A(1 + (n/L)(1 + logZ n)) · L

βmem

+ 2×
2n3

p

βmem
(4)

5.1.2 Inter-node Communication
During the 3D FFT, the node must exchange its n3

p
data

points with other nodes on the network at least twice, typ-
ically with the MPI_AllToAll collective. Technically, only
(p−1)(n3)

p2
data points are exchanged per round, but we sim-

plify it to n3

p
because p−1

p
is nearly 1 for typical values of p.

The communication time is therefore bounded by the total
number of words exchanged across the network divided by
the network bandwidth in/out of the node, denoted βlink.
In the following subsections we will look more closely at how
the network topology impacts the communication time. As
a strict lower bound (i.e, on a fully connected network with
full overlap):

Tcomm ≥ 2×
2n3

p

βlink
(5)

Comparing the relative times for the Tflops, Tmem, and
Tcomm provides an easy way to explore the potential bottle-
necks of a machine represented by the C0, βmem, and βlink

values. Table 3 shows the computed values for Keeneland us-
ing only CPUs or only GPUs. In the CPU case we see that
time for the floating point calculations is relatively minor
compared to the network times, as expected. But the more
surprising result is that memory access time is significantly
more than the flops and relatively close to the network time.
The use of the three GPUs on each node boosts the memory
and floating point throughput and has a profound impact
on the relative value of Tmem in comparison to Tlink. Un-
fortunately, as our DiGPUFFT analysis shows, intra-node
communication bottlenecks prevent the GPU from reaching
this potential. These times roughly correspond to the time
distributions reported from the P3DFFT experiments.

If it were somehow possible to drive Tmem to zero, then
the all-to-all personalized communication step becomes the
limiter and optimizing this collective becomes critical to im-

proving performance [33]. For instance, maximizing commu-
nication overlap of this collective minimizes time lost due to
latency. One state-of-the-art implementation achieves 95%
overlap on the BlueGene/L [13].

In our model we assume that inter-node communication
time (Tcomm) and intra-node communication time (Tnode =
max(Tflops, Tmem)) are independent: Ttotal = Tcomm+Tnode,
although in an ideal case they could be perfectly overlapped.

In the 3D FFT, we estimate communication time on a hy-
percube to be the cost of performing two all-to-all commu-
nication steps [34]:

TT
comm = 2×

[
(p− 1)αlink +

n(p− 1)

p2 · βlink

]
where αlink is inter-node latency. We use TT

comm to de-
note the transpose algorithm, as distinct from the binary-
exchange algorithm modeled below.

For a torus topology, Eleftheriou et al. give lower-bounds
on the all-to-all communication time with the expression

T ≥ VreceivedNhops

Nlinksβ · f

Where Nhops is the average number of hops and Nlinks is
the number of links connected to any node. This expression
is constant regardless of the dimension of the torus [17].

5.1.3 Algorithm Selection
One notable FFT method that does not involve an all-to-all
communication is the Binary Exchange algorithm. This al-
gorithm requires more bandwidth than the transpose method
by a factor of log p but requires log p communication steps
with neighboring nodes, compared with the single global
communication step required for the transpose method. This
can decrease communication time in high-latency networks,
or in the case of strong-scaling when the volume of data is
not enough to take advantage of all of a machine’s band-
width. In the 3D case, we must carry this out in three
phases:

TB
comm = 3×

[
(log p)α+

n log p

p · β

]

Figure 5.1.3 contrasts the transpose and binary-exchange
variants. For smaller values of n, the lower latency costs
could make binary-exchange the right choice. However, in
most cases this would be an inefficient use of a large num-
ber of nodes, and it would be smarter to scale to a smaller
network. However, in some cases the FFT is part of a larger
code and it is necessary to run a smaller problem across a
large network, for instance a recent turbulence simulation
running on 8000 nodes of Jaguar [15].

5.1.4 Bandwidth limits
Any problem able to utilize a system efficiently is expected
to be communication-bound, either intra-node or inter-node.

In 1999, Edelman et al. [16] projected that the rapid rate of
increase in floating point performance relative to communi-
cation bandwidth improvements would lead to prohibitively
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Figure 5: Binary-Exchange (blue) vs. Transpose
(red) algorithm for typical values of α, β. Colors
indicate the algorithm with lower communication
costs.

large communication costs in the future. As a solution, they
proposed an FFT approximation algorithm for distributed
memory clusters that would reduce the total communication
cost. This specific approach has not seen practical imple-
mentation, though there have been other attempts to over-
come communication bandwidth costs by compressing data
before sending it across the network [30, 36]. The com-
pression rate is highly dependent on the problem domain
and the amount of computation available to spend com-
pressing it, but researchers have shown that large sets of
double-precision floating point values have the potential to
be compressed down to a quarter the size with only modest
computation costs [43]. Using a lossy or lossless compression
to reduce message sizes would have the effect of artificially
boosting network bandwidth linearly. As systems become
even more communication-bound, we essentially have free
cycles carry this out.

5.2 Model Validation
The network models presented above provide a lower bound
on communication time. In this section, we check them
against real machines. We timed the communication primi-
tives on 4,096 nodes of Hopper, a 1.288 Peta-flop Cray XE6
housed at the the National Energy Research Scientific Com-
puting Center. Hopper’s 6,392 nodes form a 3D torus with
a Gemini interconnect.

Results are shown in Figure 6. As expected, the transpose
method outperforms the binary-Exchange when the prob-
lem size is large. Recall that this is due largely to the fact
that the binary-exchange method sends log p times as much
data as the transpose method. It is also important to note
that the binary-exchange is ideal for a hypercube topology
because it only exchanges data with neighboring nodes, but
on a 3D torus, such as Hopper, this no longer holds.

Equation (4) describes intra-node communication. We vali-
date this behavior by benchmarking FFTW3.2.2 across two
Intel Xeon E5530 processors, as illustrated in Figure 7

  

0.05 0.5 5 50 500
0

0

0.01

0.1

1

10
Bin-Ex
Transpose
Bin-Ex Model
Transpose 
Model

Problem Size (GB)

T
im

e
 (

s)

Figure 6: Communication costs: Binary-Exchange
vs Transpose on 4,096 nodes of Hopper

Figure 7: Intra-node 1D FFTW performance on
power-of-two problem sizes. The red line is the
memory cost expected by Equation (4), and the blue
line is measured performance.

6. PROJECTING FORWARD
6.1 Swim Lanes
Recent discussions surrounding the direction of supercom-
puting has separated into two competing strategies (com-
monly referred to as the two swim lanes): Many-Cores ma-
chines (MC) and Many-Threads machines (MT)

Debates about future exascale architectures frequently con-
trast two candidate strategies, or “swim lanes.” Some refer
to these strategies as the many-core (embedded CPU-like)
vs. many-thread (GPU-like) approaches [14, 25].

The MT strategy tries to hide latency by overlapping the
latency with concurrency, rather than reducing the latency
outright. This strategy can be seen in the Tiahne-1A GPU
Cluster. Processor dies are monopolized by relatively sim-
ple floating point units with very little die-area devoted to
cache or processor optimizations (e.g. branch prediction or
instruction reordering). Unfortunately, MT processors de-
pend on an enormous amount of parallelism from the ap-
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doubling 10-year
Keeneland time increase

Parameter values (in years) factor

Cores: pcpu 12 1.87 40.7×
pgpu 448
Peak: pcpu · Ccpu 268 Gflop/s 1.7 59.0×
pgpu · Cgpu 1 Tflop/s
Memory bandwidth: βcpu 25.6 GB/s 3.0 9.7×
βgpu 144 GB/s
Fast memory: Zcpu 12 MB 2.0 32.0×
Zgpu 1MB
I/O device: βI/O 8 GB/s 2.39 18.1×
Network bandwidth, βlink 10 GB/s 2.25 21.8×

Table 4: Using the hardware trends we can make
predictions about relative performance of future
hardware.

plication and implement a wide SIMD vector width because
the memory bandwidth necessary to fetch instruction for
thousands of processors every cycle can be prohibitive. The
MT strategy results in very high floating point density, and
therefore have fewer nodes than their MC counterparts.

Alternatively, the MC strategy takes aggressive measures
to reduce latency. Large portions of the processor die are
devoted to caches with the aim of reducing the number of
out-of-die accesses. These machines are exemplified by the
direction of the Blue Gene line of clusters.

While the concepts of the two swim lanes are still rather
nebulous and evolving on a regular basis, its not too soon to
begin thinking about how the differences between MC and
MT machines impacts particular algorithms. In the case of
the FFT, the models presented in this paper can be used to
compare and contrast the two strategies.

6.2 Predictions
Armed with the performance model of Section 5, a natural
exercise is to consider how performance and scaling could
change in light of current technology trends. Our projec-
tions are based primarily on Table 4, which shows current
values on Keeneland for various machine parameters, as well
as the time (in years) for a particular parameter to double
and the factor by which current values will increase in ten
years. Note that for several parameters we separate CPU
vs. GPU performance, though since the two are fundamen-
tally based largely on similar technologies (e.g., silicon and
manufacturing processes), we hypothesize that the rates of
growth will be identical. (Note to reviewers: Appendix A
explains how we derived these values.)

Prediction: Under business-as-usual assumptions (Table 4),
a 3D FFT will achieve 1.23 Pflop/s on a GPU-like exascale
machine in 2020. This value is 0.1% of peak, compared
to today’s fraction of peak, which is about 0.5%. Interest-
ingly, the communication time due to memory bandwidth
just starts to exceed the communication time due to net-
work bandwidth at this time.

To obtain this estimate, we extrapolated the various system
parameters as suggested by Table 4, used them to determine

the form (e.g., number of nodes) required to get a system
running at 1 Eflop/s, selected a problem size according to the
methodology of Gahvari and Gropp [21], and then evaluated
our performance model to estimate execution time.

Prediction: Intra-node memory bandwidth will dominate
future FFT performance, but not for what might be the ex-
pected reasons. The trends of Table 4 suggest that increases
in network bandwidth are, perhaps surprisingly, actually
outstripping increases main memory bandwidth. Thus, bar-
ring memory technology game-changers, network bandwidth
will eventually catch up to and surpass memory bandwidth.

It is not entirely clear to us why this observation would be
true. One conjecture is that the physical footprint of pins
going into a processor or DIMM cannot grow as quickly as
the width of, say, wires going into a router or link. This
notion is consistent with recent suggestions by interconnect
architects, who try to keep the growth in network band-
width as close to compute capacity increases as costs will
permit [5].

The primary mechanism proposed to improve the rate of
memory bandwidth scaling relative to compute scaling is
stacked memory [37]. Applying our model and known I/O
complexity estimates for the FFT, we can establish that a
node’s computation and memory transfers will be balanced
when Tmem ≤ Tcomp [8, 35], which implies that

p · C0

β
≤ O

(
log

Z

p

)
(6)

Theoretically, stacked memory makes it possible to keep the
left-hand side constant over time. Although p grows faster
than Z, it enters into this inequality through the log and so
will not decrease too quickly.

Prediction: We predict that the “CPU-like swim lane” will
perform better in the future. Based on our model, the
system-wide performance of an FFT in 2020 will be 4.87
PFlop/s.

7. CONCLUSIONS
For us, the interesting finding of this paper is that I/O-bus
(PCIe) and network bandwidth are, in fact, not the true
limiters of performance for parallel 3D FFTs. Instead, it is
intra-node communication due to main memory bandwidth
that will have the biggest impact at exascale. This suggests
that much more architectural emphasis on intra-node issues
will have the biggest pay-off in the long-run.

In terms of absolute bandwidth values, high density (GPU-
based) compute nodes extend the time until which network
bandwidth will outpace main memory bandwidth, but do
not solve the problem. The most interesting solution for
FFT-like computations, which are like sorting, is most likely
stacked memory if it can indeed deliver proportional scaling
of memory bandwidth to core counts.

Looking forward, we believe our basic modeling method-
ology and its level of detail will provide similar kinds of
insights for other computations. We think this style of anal-
ysis could be especially useful in the context of algorithm-
architecture co-design, a notion we have outlined for intra-
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node designs elsewhere [8].
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Year GB/s

1991 105.497
1992 22.4365
1993 2.3737
1994 12.3839
1995 168.193
1996 359.841
1997 437.358
1998 12.7826
1999 607.492
2000 288.345
2001 101.6956
2002 213.0243
2003 1008.594
2004 437.01
2005 42.632
2006 4385.585
2007 227.059
2008 805.8046
2009 445.869
2010 4384.461
2011 5859.367

Table 5: STREAM bandwidth. We show the best
value for any of the STREAM benchmarks reported
in each year, as of the time of submission of this
paper.

APPENDIX
A. TREND DATA: SOURCES
We include this appendix as optional reading for reviewers
interested in how we arrived at the trends and projections
of Section 6. In particular, our doubling-time estimates are
based on the sources listed below.

STREAM memory bandwidth. We extrapolate a trend us-
ing data collected at the STREAM website,3 where we con-
sider the best reported value in each year since 1991. “Best”
means we consider all reported values for any platform, in-
cluding data from the “tuned” category. By this method-
ology, our estimate should provide a reasonable estimate of
best-case sustainable memory bandwidth. The specific val-
ues we used appear in Table 5 and visualized in Figure 8.

Network bandwidth. We begin with data collected by Dally,
which covers the period 1986–2005.4 We then independently
collected the same data for systems that made the Top 500
list5 since 2005, as listed in Table 6.

Intra-node PC I/O Bus Bandwidth. Since the introduc-
tion the IBM PC’s Industry Standard Architecture (ISA)
bus line, there have been several generations of I/O bus stan-
dards. We show the trends for these busses in Table 7, which

3http://streambench.org
4http://2007.nocsymposium.org/keynote1/dally_
nocs07.ppt
5http://top500.org
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Figure 8: STREAM bandwidth. For methodology,
see Table 5.

Bandwidth
Year (Gbit/s) System

1986 0.32 Torus Routing Chip
1987 3.2 Intel iPSC/2
1991 3.84 J-Machine
1992 1.28 CM-5
1992 12.8 Intel Paragon XP
1993 28.8 Cray T3D
1994 6.4 IBM Vulcan
1994 2.56 MIT Alewife
1995 63.0 Cray T3E
1997 96.0 SGI Origin 2000
1999 204.8 AlphaServer GS320
2000 64.0 IBM SP Switch2
2001 51.2 Quadrics QsNet
2001 875.0 Velio 3003
2002 409.6 Cray X1
2003 409.6 SGI Altix 3000
2003 256.0 IBM HPS
2004 364.8 Cray SeaStar (XT3)
2005 2400.0 YARC
2007 40.8 IBM BlueGene/P (Torus network)
2007 303.6 D.E. Shaw Anton
2007 364.8 Cray SeaStar2 (XT4)
2008 460.8 Cray SeaStar2+ (XT5)
2009 2880.0 Voltaire GridDirector 4036
2010 1280.0 Cray Gemini (XE6)
2010 7680.0 Tianhe-1A
2010 51800.0 Voltaire GridDirector 4700
2012 240.0 IBM BlueGene/Q (5-D torus)

Table 6: Network router and link bandwidth.
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Figure 9: Network bandwidth. For methodology,
see Table 6.
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Figure 10: Intra-node PC I/O bus bandwidth. For
methodology, see Table 7.

includes data since 1981 and taken from both Wikipedia and
industry committee press releases.

Year Gbps.Type

1981 0.03816 ISA-PC-8 (4.77 MHz)
1983 0.064 ISA-XT-8 (8 MHz)
1984 0.128 ISA-AT-16 (8 MHz)
1987 0.16 MCA-16 (10 MHz)
1988 0.26656 EISA-32 (8.33 MHz)
1993 1.056 PCI-32 (33 MHz)
1995 2.112 PCI-32 (66 MHz)
1997 2.128 AGP-1.0
1997 4.264 AGP-1.0-2x
1997 17.064 AGP-32
1998 8.528 AGP-2.0
1998 8.512 PCI-X-64 (133 MHz)
2002 17.064 AGP-3.0
2003 17.024 PCI-X-2.0-64 (266 MHz)
2003 34.112 PCI-X-2.0-64 (533 MHz)
2004 32.0 PCIe-1.0a (x16)
2007 64.0 PCIe-2.0 (x16)
2010 128.0 PCIe-3.0 (x16)

Table 7: Intra-node PC I/O bus bandwidth.
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