Real-time HDR Tonemapping

with a Single Camera

~ Chris McClanahan ~
4/26/2011



HDR = Tonemapping

High Dynamic Range Imaging
e Effective blending different exposures
e Basic:
o hdr=[log(img]l)+log(img2)+log(img3)]/3
e Pixel values normalized [0- 1.0+], instead of fixed [0- 255]

Tonemapping
e Compressing an HDR image back down to [0-255] range
e Many Artful and Realistic methods exist
o Tone Mapping Operator (TMO)



Project Overview

Created an application that uses a single video camera to
create tonemapped HDR images in real time.

The app runs on Linux PCs (using USB or Firewire cameras)
and Android phones (using the built-in camera).

Custom OpenCV code manages the different exposure images,
and generates a basic HDR image.

The HDR image is fed to a tonemapping algorithm by Mantiuk
et al, creating a ‘ghostly’ effect.



) i - L H ‘ a w * ﬁf

> cplanes;
cplanes);
.rows,hdr.cols,CV_32
] .convertTo(R,CV_32F
.rows,hdr.cols,CV_32
.convertTo(G,CV_32F
.rows,hdr.cols,CV_32

rast = 0.11;
ration = 1.11;
pil = 1.11;

= (float*)R.data;

(float*)G.data;
= (float*)B.data;
= (float*)Y.data;

e

[Focus] - [Mode]

Firewire Camera Andr0|d Camera




Implementation

1. Capture 3 images with varying exposures (low, med, high)
2. hdr=[log(imgl)+log(img2)+log(img3)]/3;
3. HDR image fed to a tone mapping algorithm by Mantiuk et al

Mantuik et al's tonemapping operator
e Taken from the Luminance HDR project.
e Two modes:
o contrast mapping
o contrast equalization
e 'ghostly' effect
e Computationally intensive
o Requires severe down-scaling of the raw camera images
to keep processing time reasonably fast.



Implementation - Linux

e USB cameras are supported (and captured) by OpenCV
e Firewire cameras handled by custom libdc1394 wrapper
e Most USB cameras only support changing the brightness
o (not exposure)
o generates a faux-HDR image that then gets tonemapped.
e An AVT Guppy machine vision firewire camera
o allows changing the shutter speed and adjusting gain.
o This camera produced much better results than any
webcam tested.



Implementation - Android

e Built-in camera controlled via Java Android camera APls
e Massive delay between setting the exposure, and when the
camera actually gets to that exposure (if it even does).
e An arbitrary number of dummy frames are discarded before
grabbing an image
o attempt to give the camera time to adjust
o waiting for the camera’s exposure change takes a while
o exaggerates an already slow image processing loop.



Application Detalls

Pros / Features: Cons / TODOs:
e Single camera, live HDR e Very low resolution
e Mantuik TMOs: e Low frame rate
o Contrast o exposure change time
Mapping (faster, but less limits frame rate
dramatic) e Android’s camera exposure
o Contrast Equalization change is terribly slow
(slower, better looking) e No fancy GUI
e Cross platform e Manual adjustment of
o Android / Linux camera settings required
e Various camera support o trial-and-error based
o USB / Firewire / Android e Results extremely dependent
e No image alignment pre- on quality of the camera’s
processing needed (assuming exposure changes

little camera movement)
e OpenCV + OpenMP



Resources

e All the code for this project in my Google Code site:
o ViewerCV (Android)
o rttmo (Linux)

Obligatory blog post about this project



http://code.google.com/p/mcclanahoochie/source/browse/#svn%2Ftrunk%2Fandroid%2FViewerCV
http://code.google.com/p/mcclanahoochie/source/browse/#svn%2Ftrunk%2Frttmo
http://mcclanahoochie.com/blog/portfolio/real-time-hdr-tonemapping

