
Real-time HDR Tonemapping
with a Single Camera

~ Chris McClanahan ~
4/26/2011

HDR Tonemapping

High Dynamic Range Imaging
Effective blending different exposures
Basic:

hdr=[log(img1)+log(img2)+log(img3)]/3
Pixel values normalized [0- 1.0+], instead of fixed [0- 255]

Tonemapping
Compressing an HDR image back down to [0-255] range
Many Artful and Realistic methods exist

Tone Mapping Operator (TMO)

Project Overview

Created an application that uses a single video camera to
create tonemapped HDR images in real time.

The app runs on Linux PCs (using USB or Firewire cameras)
and Android phones (using the built-in camera).

Custom OpenCV code manages the different exposure images,
and generates a basic HDR image.

The HDR image is fed to a tonemapping algorithm by Mantiuk
et al, creating a ‘ghostly’ effect.

Firewire Camera Android Camera

Implementation

1. Capture 3 images with varying exposures (low, med, high)
2. hdr=[log(img1)+log(img2)+log(img3)]/3;
3. HDR image fed to a tone mapping algorithm by Mantiuk et al

Mantuik et al’s tonemapping operator
Taken from the Luminance HDR project.
Two modes:

contrast mapping
contrast equalization

'ghostly' effect
Computationally intensive

Requires severe down-scaling of the raw camera images
to keep processing time reasonably fast.

Implementation - Linux

USB cameras are supported (and captured) by OpenCV
Firewire cameras handled by custom libdc1394 wrapper
Most USB cameras only support changing the brightness

(not exposure)
generates a faux-HDR image that then gets tonemapped.

An AVT Guppy machine vision firewire camera
allows changing the shutter speed and adjusting gain.
This camera produced much better results than any
webcam tested.

Implementation - Android

Built-in camera controlled via Java Android camera APIs
Massive delay between setting the exposure, and when the
camera actually gets to that exposure (if it even does).
An arbitrary number of dummy frames are discarded before
grabbing an image

attempt to give the camera time to adjust
waiting for the camera’s exposure change takes a while
exaggerates an already slow image processing loop.

Application Details

Pros / Features:

Single camera, live HDR
Mantuik TMOs:

Contrast
Mapping (faster, but less
dramatic)
Contrast Equalization
(slower, better looking)

Cross platform
Android / Linux

Various camera support
USB / Firewire / Android

No image alignment pre-
processing needed (assuming
little camera movement)
OpenCV + OpenMP

Cons / TODOs:

Very low resolution
Low frame rate

exposure change time
limits frame rate

Android’s camera exposure
change is terribly slow
No fancy GUI
Manual adjustment of
camera settings required

trial-and-error based
Results extremely dependent
on quality of the camera’s
exposure changes

Resources

All the code for this project in my Google Code site:
ViewerCV (Android)
rttmo (Linux)

Obligatory blog post about this project

http://code.google.com/p/mcclanahoochie/source/browse/#svn%2Ftrunk%2Fandroid%2FViewerCV
http://code.google.com/p/mcclanahoochie/source/browse/#svn%2Ftrunk%2Frttmo
http://mcclanahoochie.com/blog/portfolio/real-time-hdr-tonemapping

