
Dynamic Route Re-planning

1. PROBLEM
Search algorithms can be used to determine the optimal path from
one location to another. These algorithms are especially useful
when applied to automobile route planning. However, automobile
route planning can be significantly influenced by unknown and dy-
namic information about the environment. The cost of taking a
given road may change based on the time of day, the weather, or
construction work. Drivers may deviate from the current route for
a variety of other reasons. Route planning algorithms running on
embedded devices in automobiles must react to changes in the en-
vironment in real time so that drivers can continue to their desti-
nations. Traditional informed search algorithms do not provide an
efficient way of recalculating routes based on changes in the en-
vironment because these algorithms were designed to operate on
static information.

2. RELATED WORK
A* is an informed search algorithm widely used for path-finding
[Russell and Norvig 2009]. However, A* is not optimized for path
finding cases in dynamic environments. A* can be adapted to dy-
namic environments by restarting once a change in the environment
is encountered, however the algorithm will then perform more work
than may be necessary. Lifelong Planning A* (LPA*) is an im-
provement to A* that efficiently updates only the changed paths
in a dynamic environment [Koenig et al. 2005]. D* Lite is heavily
based on LPA* [Koenig and Likhachev 2002]. Other related work
in this area includes many A* variants such as Anytime Repair-
ing A* (ARA*) [Likhachev et al. 2007], Fringe Saving A* (FSA*)
[Sun and Koenig 2007], and Generalized Adaptive A* (GAA*)
[X. Sun and Yeoh. 2008]. The class text book, Artificial Intelli-
gence: A Modern Approach, also contains A* information [Russell
and Norvig 2009].

3. APPROACH
This paper discusses the implementation of D*Lite, which is an
algorithmically different improvement of D* that is based on the
popular LPA* algorithm [Koenig and Likhachev 2002]. D* (Dy-
namic A*) is an informed searching algorithm that brings incre-
mental search to A* [Stentz 1994]. When calculating the shortest
path, D* assumes that unknown states in the environment are not
obstructed [Stentz 1994]. Once an obstructed state is encountered,
only the paths that are affected by the obstruction are recalculated
and a new path may be selected.

The D* Lite algorithm is shown in Figure 1. This algorithm
does not make assumptions about how the edge costs change, only
whether they change in the world because the robot revised its ini-
tial estimates. D* Lite can be used to solve the problem of unex-
pected route changes due to road conditions or goal-directed navi-
gation in unknown terrain.

Fig. 1. D*Lite Algorithm

D* Lite operates similarly to LPA* and is derived from LPA*,
but the start and goal vertices are exchanged and all of the edges
are reversed in the pseudo code [Koenig and Likhachev 2002]. D*
Lite searches from the goal location to the start location while esti-
mating the goal distances. LPA* searches from the start location to
the goal location, estimating the start distances.

ACM Transactions on Graphics, Vol. 01, No. 1, Article 001, Publication date: January 2011.



D* Lite performs a search by first executing the
ComputeShortestPathFunction(). This function oper-
ates on a priority queue that initially contains only the goal node.
Over time, the predecessors of each node in the priority queue
are added until the algorithm reaches the start node. This function
operates on two values, g and rhs. The g value represents the
distance of a node to the goal. For example, g(s) indicates the
distance from the node, s, to the goal. rhs values are a one-step
look that is based on the g values.

rhs(s) = mins′εSucc(s)(c(s, s
′) + g(s′)) (1)

The rhs value of a node, s, with respect to its predecessor, s, is
defined as the cost of moving from s to s plus the distance from s to
the goal. Once the rhs values have been defined and are stable, the
shortest path from the start node to the goal node can be found by
moving from the start node towards the successor with the lowest
rhs value until the goal node is reached.

Additionally, D* Lite employs tie-breaking criterion that have
been simplified and priority maintenance techniques are used to
remove many complex multi-line nested conditional statements
found in regular D* [Koenig and Likhachev 2002]. These improve-
ments make D*Lite substantially more simple than D* and improve
the analysis of the program flow.

The implementation of A* in this paper initially comes from the
example code in the AIMA [Russell and Norvig 2009]text book,
where we have heavily modified and instrumented it to suite our
tests. The pseudocode of D*Lite listed in Figure 1 was translated
into python code and instrumented for the tests in this paper.

4. EVALUATION

Fig. 2. Distance Traveled Comparision of A* vs D*Lite with no Blacklist

Our D* Lite testing is set in the context of route planning on
roadways. In our tests, we compare D*Lite to A* in nodes traveled,
distance traveled, and run time, while varying the graph size and the
number of obstructed nodes (unexpected roadblocks).

The code for this project heavily modifies the python example
code from the AIMA text book [Russell and Norvig 2009]. The A*
implementation was instrumented to restart from the current node
when encountering a path cost change. Our D*Lite algorithm was
implemented by following the pseudocode listed in Figure 1.

To simulate road driving and route planning, a large map of
nodes is randomly created with varying path costs. A blacklist of
nodes is also randomly created. This blacklist is used to demarcate
where obstructions will occur (via setting the node cost to infinity),
but changes only when the search agent (car driver) is about to go
along that path. A* and D* Lite are tested with the same graph and
blacklist for each run.

A simulation of 100 runs while varying the graph size and black-
list is used to test the relative performance between D*Lite and A*.
The A* algorithm requires a restart at all roadblocks while D* Lite
incrementally recalculates the changing route.

Fig. 3. Distance Traveled Comparison of A* vs D*Lite with Blacklist
Nodes than change edge costs suddenly during planning

Figures 2 and 3 show the average solution length (total cost of
the final path) compared to the number of nodes in the randomly
computed graph. The X axis represents the graph size ranging from
100 to 1000 nodes. The Y axis shows the total cost of the solution.

As seen in Figure 3, the results from our research indicate that
D* Lite, on average, finds a route with a lower cost than A* in terms
of distance when obstructions are encountered. When there are no
obstructions, D* Lite finds a slightly longer path than A*, as shown
in Figure 2.

Figure 4 shows the calculation time (in ms) in comparison to
the number of obstructions encountered. The X axis represents the
number of obstructions that were encountered and the Y axis rep-
resents the calculation time.

The results in Figure 4 show that, in most cases, D* Lite takes a
shorter amount of time to calculate its path than A*. In particular,
when 1 to 4 obstructions are encountered, D* Lite is 2 to 3 times
more efficient than A*.



Fig. 4. Runtime Comparison of A* vs D*Lite with Blacklist Nodes than
change edge costs suddenly during planning

5. DISCUSSION
5.1 Analysis

In this paper, we have presented D* Lite, a novel fast re-planning
method for vehicle navigation in unknown or changing terrain
which implements the same navigation strategies as Dynamic A*
(D*). Both algorithms search from the goal location towards the
current location of the vehicle, use heuristics to focus the search,
and use similar ways to minimize reordering of the priority queue.

The results from our testing, as seen in Figure 3, indicate that
D* Lite finds a shorter path than A* when obstructions are encoun-
tered. The A* algorithm will find the optimal path between two
points in a static graph. With our implementation, obstructions are
not encountered until after a path has been decided and the agent
is about to move in to the node that is obstructed. From this point
A* is run again with the start node now representing the current lo-
cation. Because of the dynamic environment and frequent restarts,
A* may not find the optimal path in this situation.

Our results also show that D* Lite is significantly faster that A*
in terms of computation time when roadblocks are present. D* Lite
selectively updates information about attributes that have changed
in the environment. For example, the rhs and g values will only be
recalculated on nodes that could possibly exist along a new path.
In contrast, when A* is restarted, information about every node
will be recalculated. Because of the selective recalculation, D* Lite
performed faster than A* in our testing.

Finally, our results show that, in most cases, the less roadblocks
that were encountered, the better A* performs with respect to time
as compared to D*Lite. This is due to the fact that an efficient A*
implementation was compared to a non-optimized implementation

of D*Lite. With a more correct D* Lite implementation, the perfor-
mance of A* and D* Lite on static environments is expected the be
very similar.

5.2 Future Work

In our testing, we found that most of the obstructed nodes occurred
near the beginning of the graph. The location of obstructed nodes
can have a profound impact on the performance of search algo-
rithms. Obstructions that are encountered near the beginning of a
graph search will require more computation to correct than obstruc-
tions that are found near the end of the graph search. Obstructions
near the start may change the current path significantly. In future
research, we would like to ensure that obstructions are equally dis-
tributed throughout the graph.

To extend the research conducted for this project, in the future,
we would like to implement other dynamic route planning algo-
rithms such as Fringe Saving A* or Lifelong Planning A*. A com-
parison between LPA* and D* Lite would also be interesting be-
cause the two algorithms are very similar. D* Lite is based off of
LPA*, but traverses the nodes in reverse order. These algorithms
could be compared to determine the advantages and disadvantages
of searching from the goal to the start.

D* Lite builds on LPA* which has its roots in A*. D* Lite is
easy to understand and extend while being at least as efcient as
D*. Our results provide a foundation for further research on path
planning in dynamic environments. We believe that D* Lite would
provide accurate directions in a short amount of time for a variety
of navigation applications.

REFERENCES

KOENIG, S. AND LIKHACHEV, M. 2002. D* lite. American Association
for Articial Intelligence.

KOENIG, S., LIKHACHEV, M., AND FURCY, D. 2005. Lifelong planning
a*. Elsevier Science.

LIKHACHEV, M., FERGUSON, D., GORDON, G., STENTZ, A., AND

THRUN, S. 2007. Anytime search in dynamic graphs. Elsevier Science.
RUSSELL, S. J. AND NORVIG, P. 2009. Artificial Intelligence: A Modern

Approach, Third Edition. Pearson.
STENTZ, A. 1994. Optimal and efficient path planning for partially-

known environments. In Proceedings IEEE International Conference on
Robotics and Automation.

SUN, X. AND KOENIG, S. 2007. The fringe-saving a* search algorithm -
a feasibility study. In Proceedings of the International Joint Conference
on Artificial Intelligence.

X. SUN, S. K. AND YEOH., W. 2008. Generalized adaptive a*. In Pro-
ceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems.


