
Aerial Vehicle Navigation Planning

1. PROBLEM
Traditionally, path planning algorithms solve problems in two-
dimensional space. Some applications, such as autonomous aerial
vehicle planning, require guidance in three-dimensions. Aerial ve-
hicle navigation is a complex problem because it may involve stan-
dard movements, such as forward and backward, as well as navi-
gation over and under obstacles in the environment. Additionally,
these vehicles may also operate under fuel and timing constraints
which makes the ability to quickly and efficiently find short paths
essential. In complex worlds with a significant amount of obstruc-
tions, path planning algorithms can solve this problem by locating
an optimal path between two points.

2. RELATED WORK
Rapidly-exploring Random Trees (RRTs) is an example of a Mo-
tion Planning algorithm that is based of randomization. Other ex-
amples of randomized motion planning algorithms include, but are
not limited to, randomized potential fields and expansive-space
planners. Randomized potential fields is a sampling based plan-
ner that uses random-walks to escape local minima, using a po-
tential function that tries to estimate the cost from any state con-
figuration to the goal [LaValle 2006]. The main drawback, how-
ever, was that the method involved many heuristic parameters that
had to be adjusted for each problem [LaValle 2006]. Expansive-
space planners attempt to explore new space by probabilistically
choosing new verticies from different predetermined neighbor-
hoods [LaValle 2006]. The main drawbacks are that the planner
requires substantial problem-specific parameter tuning [LaValle
2006]. A* : is an extension of Dijkstras algorithm that tries to re-
duce the total number of states explored by incorporating a heuristic
estimate of the cost to get to the goal from a given state [Russell and
Norvig 2010]. A* is not originally for motion planning or random,
but can be adapted as such for interesting comparisons.

3. APPROACH
Rapidly exploring random trees and A* search were evaluated on
randomly generated environments. A three dimensional grid of
nodes and connections were created to form an undirected graph
as shown in Figure 1. The connections in the graph were also given
a uniform cost. The grid consisted of nodes that are spaced one
hundred units apart arranged in a cube with an equal length, width,
and height. The algorithms were tested on environments where the
dimensions of the cube varied from 600 units to 1200 units.

While planning, each algorithm must also navigate around ob-
structions that were created and placed in the environment. Nodes
cannot exist within obstructions and connections cannot pass
through an obstruction. Each obstructions coordinates as well as
height and length were varied based on the size of the graph. Every

Fig. 1. A randomly generated 3D environment.

environment was tested twice with a range of 10 to 50 obstructions.
In each test, the start node is set to the origin of the graph and the
goal node was chosen randomly from the graph. An example run
within our 3D navigation simulation can be seen in Figure 3.

An existing A* search implementation was modified to oper-
ate in three dimensions and evaluated on the random graphs. An
admissible heuristic was created for A* by calculating the three-
dimensional euclidean distance from the current node to the goal
node.

Rapidly-exploring Random Trees (RRTs) are introduced as a
planning algorithm to quickly search high-dimensional spaces that
have both algebraic constraints (obstacles) and differential con-
straints (nonholonomics and dynamics) [LaValle 1998]. The key
idea is to bias exploration toward unexplored portions of the space
by sampling from all points in the state space, and incrementally
pulling the search tree toward them [LaValle and Kuffner 2001].

The basic RRT algorithm is given in Figure 2. Each iteration
of construction attempts to extend the RRT by adding a new vertex
that is biased by a randomly-selected state xrand. The EXTEND
function selects the nearest vertex already in the RRT xnear , and
applies a valid motion towards the randomly selected state input,
creating a new node to be added to the RRT xnew [LaValle and

ACM Transactions on Graphics, Vol. 02, No. 2, Article 002, Publication date: January 2011.



Fig. 2. RRT algorithm.

Fig. 3. Example run of the two algorithms in a randomly generated world,
starting from the bottom corner navigating to mid-top. - Green: A* — Cyan:
RRT

Kuffner 2001]. This biases the RRT to rapidly explore the state
space.

4. EVALUATION
With this path planning simulation (Figure 3), a number of vari-
ables and results were recorded, including: the number of nodes in
the graph, the number of obstructions, the running time of both al-
gorithms, the final path length of both algorithms, and the number
of nodes that were expanded by both algorithms. Our evaluation fo-
cuses on the number of expanded nodes, the final path length, and
the running time as a function of the number of nodes in the graph.

Fig. 4. Number of nodes expanded for each graph size.

Fig. 5. Number of nodes in final path for each graph size.

4.1 Nodes Expanded

The number of nodes that each algorithm expanded as a function
of graph size is shown in Figure 4. When using the term expand-
ing, we mean that the search algorithm moved to a certain node and
can begin evaluating if it should move to the neighbors of the new
node. Even when the graph size reaches more than 2000 nodes, A*
search expanded at most 28 nodes. From our testing, A* typically
expanded only the nodes that are on the optimal path with occa-
sional expansions of a small number of additional nodes. In some
cases, RRTs expanded significantly more nodes than A*. However,
in about 50% of the simulations, RRTs expanded a similar amount
of nodes as A*.

4.2 Path Length

The length of the final path was also recorded, as seen in Figure
5. In most of the simulations, RRTs had a final path length that is
equal to or a few units longer than the final path that A* found.
RRTs never found a path that is shorter than A* search. In some
cases, the final path length for RRTs was much longer than that of
A*.



Fig. 6. Time to find the final path for each graph size.

4.3 Runtime

Finally, the running time of each simulation as a function of the
number of nodes in the graph was also recorded. The results from
this testing can be seen in Figure 6. In every graph, A* search had a
running time that was less than the running time of the RRT search-
ing algorithm. A* typically required a third of a second or less to
compute the optimal path. In some cases, the RRT algorithm spent
a similar amount of time as A* search. In most cases, the computa-
tion time for RRTs was two or three times longer than that of A*.
In some simulations, RRTs required around 90 seconds to perform
path planning.

5. DISCUSSION
An analysis of our results is described below. Planned additions to
this project are explained in the future work section.

5.1 Analysis

The random nature of RRTs generated interesting results with re-
spect to A* search. In some cases, RRTs found a similar path as
A*, but in about half of our simulations, RRTs found a path that
is significantly longer. RRTs randomly choose a point that is some
distance away from currently visited nodes and the algorithm then
moves towards the point. This random movement continues un-
til the goal node is reached. While A* is continually calculating
the best path, RRTs are operating in a random fashion, which can
produces sub-optimal results. In fact, it has been shown that as
the number of samples increases, the RRT algorithm converges to
an optimal solution with probability zero [Karaman and Frazzoli
2010].

For our testing, limits were placed on the RRT algorithm to en-
sure that the running time is reasonable for a large number of sim-
ulations. The RRTs were limited to expanding 1000 nodes. This
constraint may have influenced some of the failed attempts at find-

ing the goal, however, the paths in these solutions would have been
slightly more inefficient than the results currently show.

Results also show (Figure 6) that the runtime of RRT is on aver-
age slightly worse than A*, but still comparable. A longer runtime
is expected due to the extra calculations and randomness in RRT.
Sometimes, the runtime was over 100x slower than A*, probably
due to a worst case ordering of sampling the state space. The ma-
jority of the time, both algorithms finished in well under 1 second.

Based on our testing, the A* algorithm would be the obvious
choice for path planning of an autonomous aerial vehicle if the goal
is to get from one point to another in the shortest amount of time.
However, if the vehicle is used to explore an environment, RRTs
could provide a useful planning algorithm. The RRT algorithm
could easily be modified so that a significant area of the graph is
visited which makes this algorithm ideal for exploration situations.

A visualization of each algorithm and its path was initially a fun
novelty, as it was neat to see both A* and RRT choose different
paths to the same goal. The 3D visualization, however, later proved
to be an invaluable debugging tool. The obstacle avoidance check
for RRT was initially not working correctly, allowing the tree to
travel straight through walls, but viewing the tree in 3D helped
catch that and the problem was then resolved. The visualization
also helped us understand how each algorithm works. When test-
ing on large graphs, it is very easy to see that the path generated by
A* is much shorter than the path generated by RRTs.

5.2 Future Work

In the experiments in this paper, only holonomic aerial vehicle
planning was modeled. This was mainly for making the compar-
ison to A* easier, as we found its difficult to model non-holonomic
constraints with A*, but trivial with RRTs. In future work, more ad-
vanced vehicle modeling can be simulated, including vehicles with
non-holonomic and kinodynamic constraints that can be compared
to other motion planning algorithms.

We would also like to expand our work by incorporating the
RRT* algorithm. We would expect the RRT* algorithm to perform
similarly to A* search, but would allow for the modeling of non-
holonomic constraints [Karaman and Frazzoli 2010].

REFERENCES

KARAMAN, S. AND FRAZZOLI, E. 2010. Incremental sampling-based al-
gorithms for optimal motion planning. CoRR abs/1005.0416.

LAVALLE, S. 1998. Rapidly-exploring random trees - a new tool for path
planning. Computer Science Dept., Iowa State Univ..

LAVALLE, S. 2006. Planning Algorithms. Cambridge University Press.
LAVALLE, S. AND KUFFNER, J. 2001. Rapidly-exploring random trees:

Progress and prospects.
RUSSELL, S. J. AND NORVIG, P. 2010. Artificial Intelligence: A Modern

Approach, Third Edition. Printince Hall.


