
Image Segmentation via MCMC

1. PROBLEM
Image segmentation in computer vision is the process of grouping
parts of an image into related segments. There are numerous poten-
tial applications of image segmentation including face and finger-
print detection as well as a variety of medical imaging uses. As this
technology becomes more accurate and reliable, it could be used
to identify tumors or to help guide surgery with less errors than
humans.

Image segmentation is an essential and, often, an initial task in
image analysis that is used to distinguish objects of interest from
the rest of the image [Lucas 2010]. However, image segmentation
is a very challenging and long standing problem. Images are incred-
ibly complex and include a variety of objects at different scales.
These objects may also be occluded by other objects and the ap-
pearance of the objects can be significantly changed by lighting
conditions. Since image segmentation is a well-researched area,
many solutions to these problems have been proposed, each with
advantages and disadvantages [Dellaert 2007].

2. RELATED WORK
K-means is an algorithm used for clustering N data points into k
disjoint subsets, and can be used for image segmentation. This al-
gorithm is simple, fast, and easy to implement, but can also be
skewed by outliers. Also, choosing a K value that generates the
most accurate results can be difficult. [Hoiem 2010]. Our method
automatically optimizes regions.

Region growing methods exploit the fact that pixels which are
close together will most likely have similar grey values. One ex-
ample is the Watershed algorithm, where an image is interpreted as
a topographic surface where the gray-levels of the image represent
the altitudes, and water flows down the image into regions [Lucas
2010]. This algorithm is only as good as the soft boundaries and
may not be able to choose a variety of regions for multiple segmen-
tations. Additionally, These methods do not incorporate top-down
information [Hoiem 2010], but our method does.

Graph-cut methods treat image pixels as verticies in a graph and
attempt to cut (segment) the image into regions via min-cut algo-
rithms, and can provide very fast inferencing. However, these meth-
ods are not always applicable to the problem, require unary terms,
and are sensitive to noise [Hoiem 2010]. Our method handles noise
and clutter by using multiple salient features.

3. APPROACH
Images within our implementation are represented as Markov net-
works. To segment an image using Markov networks, or Markov
Random Fields (MRF), one approach is to represent the image pix-
els by a graph of nodes with probabilities and priors being the pixel
values. A common method of inference in MRF is Gibbs sampling.

Fig. 1. Original color input image from the BSDS database

Fig. 2. Grayscale segmented output image from running our DDMCMC
algorithm on the color input image

Gibbs sampling is an MCMC method that approximates values
from the Markov network to find pixels that are similar [Tu and
Zhu 2002].

In our MCMC image segmentation implementation, we use a
color image as input for the algorithm. A sample input image can
be seen in figure 1. The image is first converted to grayscale, and the
grayscale values of each pixel are thresholded into several regions.
The result of this process looks like a much noisier version of the
image in figure 2. These grayscale regions of similarly thresholded
pixels are then used as the priors of the MRF graph. The Markov
network graph is then constructed. Next, for a given number of iter-
ations, the algorithm loops through all pixels in both the grayscale
region image and the color image to calculate the energy at the cur-
rent pixel. This calculation can be represented as follows for each
pixel:

classEnergy(pixel)=gibbsEnergy(pixel)+globalAvg(pixel)



Fig. 3. Binary contour image of the grayscale output image from our al-
gorithm, used for comparison against the human segmented image

Fig. 4. Human segmented image from the BSDS database; used as the
reference for segmentations of the original color image

The Gibbs energy is based on color image information and the
grayscale image segment priors. Each pixels RGB values are con-
verted into the Onta I1I2I3 colorspace during the Gibbs sampling
process. In the current implementation, the sampling and classifi-
cation is done by looping through all the pixels linearly, instead
of randomly, though multiplie iterations of sampling can influence
classification. The segment classes may be changed for a pixel
based on the Gibbs energy of the pixels neighbors. This process
helps smooth the pre-segmented grayscale image into better re-
gions. The algorithm outputs a grayscale image, as shown in figure
2, consisting of many regions where each region is color coded. Fi-
nally, for the evaluation of the algorithm in the BSDS Benchmark,
a black and white image is created showing only the outline of each
boundary, as seen in figure 3.

4. EVALUATION
Our algorithm was evaluated against The Berkeley Segmentation
Dataset and Benchmark [Berkeley 2005] program. The BSDS is

a set of Matlab scripts that compare any segmentation algorithms
output images against well-defined images that have been hand seg-
mented into regions and labeled by humans. An example of a hand-
segmented image can be seen in figure 4.

The benchmark measures two values, precision and recall, to
produce a precision-recall curve for the input algorithm. Precision
is defined as the probability that a machine-generated boundary
pixel is a true boundary pixel. This provides a measure of how
much noise is in the output of the detector. Recall is defined as
the probability that a true boundary pixel is detected. Recall pro-
vides a measure of how much of the ground truth is detected. Here,
ground truth is the hand-segmented images created by humans. A
precision-recall curve is then created from these values and shows
the inherent trade-off between the two. This is the trade-off between
misses and false positives as the detector threshold changes.

As shown in figure 5, our algorithms precision and recall were
58% and 41%, respectively. The algorithm was set to output 4 seg-
ments using 2 iterations of Gibbs sampling with a weighting factor
β = 0.25.

Fig. 5. F-measure of DDMCMC, from BSDS Benchmark

Additionally, the BSDS computes the F-measure, which is the
harmonic mean of precision and recall. The F-measure is defined at
all points on the precision-recall curve. The maximum F-measure
value across an algorithm’s precision-recall curve is used as its
summary statistic which allows different algorithms to be quanti-
tatively compared [Berkeley 2005].

Our algorithm’s global average F-measure was F = 0.48, for
the same configuration as mentioned previously.



Fig. 6. Original color input image from the BSDS database

Fig. 7. Binary contour image of the grayscale output image from our al-
gorithm, used for comparison against the human segmented image

5. DISCUSSION

5.1 Analysis

The F-measure is the harmonic mean of the precision and recall
score of the BSDS Benchmark, and ranges from [0, 1], where a
higher F-measure indicates results that are more accurate than a
lower F-measure.

The overall F-measure for our implementation was F = 0.48
which has the same accuracy as the segmentation induced by
scale-invariance technique from the Berkley Segmentation Bench-
mark results. The best F-measure is from the Global Probability
of Boundary technique which produced a value of F = 0.70
[Berkeley 2005]. There are nine other algorithms listed that pro-
duced more accurate results than our implementation. Many of
them combine several image preprocessing steps such as edge de-
tection, mean color regions, contour maps, gradient extraction, and
color-space shifts, to use in a weighted heuristic for classifying seg-
ment regions [Berkeley 2005].

Our best F-measure for a single image was F = 0.88, as seen in
figures 6 and 7, in contrast to the best known score in the Berkeley

Database, F = 0.92, produced by the Ultrametric Contour Maps
(UCM) technique [Berkeley 2005]. The UCM algorithm defines
ultrametric distances for boundary extraction by integrating local
contour cues along the regions’ boundaries and combining this in-
formation with intra-region attributes [Berkeley 2005]. In the re-
sults of this particular image, there are only two algorithms (out of
the top 10) that produced a better F-value than our implementation:
UCM and min-cover approaches [Berkeley 2005].

5.2 Future Work

In the future, we would like to implement a few improvements
on our current work. Some techniques incorporate image pre-
processing, such as the use of edge detection, before the image
is sampled. Edge detection could improve our results because this
process would much more clearly define the regions. Our algorithm
could also be evaluated while scaling the image to a few different
sizes. The results from each size could be combined to produce a
better final segmentation.

The segmentation result can be significantly altered by changing
the number of segments that the algorithm is trying to identify, so
finding the correct number of segments can be very important in
finding a good solution [Dellaert 2007]. We would like to conduct
more research on finding the optimal number of segments. Finally,
the number of iterations of Gibbs sampling can have an effect on the
accuracy of the solution. It would be interesting to do an analysis
of the results obtained by varying the number of iterations.

While working on this problem, we have learned that computer
vision is a very challenging area of computer science. This project
focused on image segmentation, which is only trying to break an
image up in to regions that are associated with one another. This is
a task that is so simple for humans to accomplish, but very challeng-
ing for computers. It seems like there is a limit to how well image
segmentation can work without the computer knowing much more
about the objects that are in the picture. However, teaching a com-
puter about objects that may exist within an image makes image
segmentation an even more challenging task.

REFERENCES

BERKELEY, U. 2005. The berkeley segmentation dataset and benchmark.
Online Dataset.

DELLAERT, F. 2007. Part 3: Mcmc tutorial : Monte carlo methods. Slides
from Monte Carlo Methods in Vision and Robotics.

HOIEM. 2010. Segmentation and grouping. Slides from CS 543: Computer
Vision, University of Illinois.

LUCAS. 2010. Image segmentation. Technische Universitaat Maunchen.
TU AND ZHU. 2002. Image segmentation by data-driven markov chain

monte carlo. PAMI.


