GPU TV-L! Optical Flow

1 Problem statement

Determining optical flow, the pattern of apparent motion
of objects caused by the relative motion between observer
and objects in the scene, is a fundamental problem in com-
puter vision. Given two images, goal is to compute the
2D motion field - a projection of 3D velocities of sur-
face points onto the imaging surface. Optical flow can
be used in a wide range of higher level computer vision
tasks, from object tracking and robot navigation to mo-
tion estimation and image stabilization.

There is a real need for shortening the required com-
putational time of optical flow for use in practical appli-
cations such as robotics motion analysis and security sys-
tems. With the advances in utilizing GPUs for general
computation, its become feasible to use more accurate
(but computationally expensive) optical flow algorithms
for these practical applications.

With that in mind, we propose to implement an im-
proved L1-norm based total-variation optical flow (TV-
L1) on the GPU.

2 Related work

Graphical Processing Units (GPUs) were originally devel-
oped for fast rendering in computer graphics, but recently
high level languages such as CUDA [1] have enabled
general-purpose GPU computation (GPGPU). This is use-
ful In the field of computer vision and pattern recogni-
tion, and [5] demonstrate this by implementing the Horn-
Schunck method on GPUs using CUDA.

Two well known variational approaches to computing
the optical flow are the point based method presented in
Horn and Schunck [3], and the local patch based method
of Lucas and Kanade [4]. Our approach is an improve-
ment of [3] that replaces the squared measure of error with
an L! norm. The highly data-parallel nature of the solu-
tion lends itself well to a GPU implementation.

3 Approach

The standard Horn-Schunck algorithm minimizes the fol-
lowing energy equation

{ Jo IVut > + [Vuq |2dQ+ }
A Jo (L@ + u() — Io(2))2d0

where the first integral is known as the regularization
term, and the second as the data term. An iterative so-
lution to the above optimization problem is given in [3]
as

min
u

Lty + Ly, + I
a? + 12+ 12
Iy, + Iy, + I
Y 2+ 2+ 12

Uy = Uy — Ly

where u = (ug,u,) is the flow field, @ is a weighted
local average of the flow, I, I, and I, are the image
gradients in z, y and ¢ respectively, and alpha is a small
constant close to zero. These two equations come from
solving the Lagrangian optimization equations associated
with the energy function, and using a finite differences
approximation of the Laplacian of the flow.

The TV-L! approach optimizes the following equation

min {/ AMo(z) — Ii(z + u(x))| + |Vu|} dQ
u Q

which replaces the squared error term with an L' norm.
Wedel et al. [6] propose an iterative solution that alterna-
tively updates the flow and an auxiliary variable v. For a
fixed v, u is updated as

u=v+advp
where p is iteratively defined as

I~3n+1 — pn 4 Ivu
(%
gl f)n+1

P = max{1,pnt1}

Where the gradient is approximated with the discrete for-
ward difference

Vu = (Uit = Wi, i1 — Wij)

and the divergence with the discrete backward difference
(superscripts denoting the first and second components)

divp = pz{j - pzl,jfl + p?,j - P?ﬂ,j
Given a fixed u the update step for v is given as

AoV if p(u) < —Aa|VI|?
—AaVI if p(u) > A\a|V 1|2
p(W)VI/|VL1|? if p(u) > —Na|VI|?

Where p = I1(x + ug) + (u — ug)VIy — Iy is the
current residual. On top of this alternative optimization,
we implement a median filter on the flow field, and use
image pyramids in a coarse-to-fine approach in order to
handle larger scale motions. That is, flow is computed
on coarse sub-sampled images, and then propagated as an
initial estimate for the next pyramid level.

In both algorithms, there are several points at which
an iterative solution for the flow vector of an individual
pixel in the image can be computed concurrently with its
neighbors. This allows us to improve performance from a
serial implementation by using OpenCL. In particular, we
wrote OpenCL kernels to compute flow updates, image
gradients, and local flow averages for Horn-Schunck, as
well as kernels for u and v updates, and discrete forward
and backward differences.

vV=u-+

Figure 1: Comparison of flow fields calculated for the Venus dataset. Top row: Original image, ground truth flow.
Bottom: Horn-Schunck, TV-L!.

Figure 2: Comparison of different settings for pyramid levels and fixed point iterations. Top row: original image,
ground truth flow. Bottom row: the output using the same settings in Figure 3, 4 pyramid levels and 14 iterations, and
14 levels and 4 iterations.

Dimetrodon | Grove2 | Hydrangea | RubberWhale | Urban2 | Venus
Average HS 1.99 391 3.84 0.67 9.69 4.62
Average TV- L1 1.43 1.79 1.97 0.69 7.33 2.58
Max HS 223.04 545.86 294.06 71.21 358.19 | 447.7
Max TV-L! 4.3 9.55 16.01 6.02 27.57 11.83

Figure 3: Comparison of average endpoint error between Horn-Schunck and TV-L!

4 Evaluation

We ran both the Horn-Schunck and TV-L! algorithms on
a subset of the Middlebury dataset. Figure 3 lists average
and maximum endpoint error in pixels for both algorithms
for each dataset. For this table, we ran Horn-Schunck for
60 iterations. More than 60 iterations showed minimal
improvement. TV-L! ran for 7 fixed point iterations, and
used a pyramid of 7 images with a 0.9 scaling factor. Fig-
ure 1 gives an example of output flow compared to ground
truth on the Venus dataset.

Figure 2 illustrates the effect of the number of fixed
point iterations and the size of the image pyramid used.

We also compared runtimes of a reference Matlab im-
plementation of TV-L!, a straightforward port of the
Matlab code using LibJacket, and our own hand written
OpenCL code for the RubberWhale data set. We ran all
three on the same machine, a MacBook Pro with an In-
tel Core i7 2.66GHz CPU and Nvidia GeForce GT 330M
GPU, using 7 pyramid levels with a 0.66 scale factor and
5 fixed point iterations per level. We averaged the run-
times over 5 runs after an initial untimed “warm up” run.
On the RubberWhale data set the reference Matlab imple-
mentation ran in an average of 8.7427 seconds, LibJacket
took 0.7163 seconds, and our hand written OpenCL im-
plementation 0.4026 seconds. On the Venus data set, our
OpenCL implementation runs at 3fps.

5 Discussion

Figure 3 shows that TV-L' performs better than Horn-
Schunck in almost all cases. The difference between the
two methods is most clearly seen on the Urban2 setting,
which has the largest apparent motion of the group. Since
TV-L' makes use of an image pyramid, we are able to
capture larger motion, so this make sense. Figure 3 also
shows that the Horn-Schunck method produces larger sin-
gle pixel error, which makes sense because the TV-L!
method applies a median filter, and can throw out such
outliers.

The parameters used in Figure 3 give roughly the same
number of iterations to each method: Horn-Schunck uses
a fixed 60 iterations, and TV-L! performs 7 fixed point
iterations at each of 7 pyramid levels. By altering the ra-
tio of fixed point iterations to pyramid levels, the perfor-
mance of the algorithm on a particular dataset changes
given the same “budget of iterations. By increasing
the number of pyramid levels, the algorithm can capture
larger motions, while increasing fixed point iterations im-
proves the flow estimates at each pyramid level. Figure
2 shows this accuracy trade off. Performance wise, in-
creasing the number of pyramid levels is more costly than

increasing the number of inner iterations, as pyramids in-
volve more memory transfer overhead.

Looking back at the entire project, one important les-
son is that while the alternative formulation of the opti-
mization problem leads to a more robust solution, proba-
bly the most important improvements the TV-L! approach
has over standard Horn-Schunck are the inclusion of an
image pyramid to handle larger scale motion, and the me-
dian filter to remove outliers.

The purpose of implementing these algorithms on the
GPU was to achieve some performance gain over the stan-
dard serial version. Our first naive implementation of both
TV-L' and Horn-Schunck algorithms made use of global
memory for all computations, which could certainly be
improved in future work. A good analogy is to compare
working on global memory versus shared/texture memory
in a GPU to operating on data directly on hard disk ver-
sus RAM/cache. Using global GPU memory allows for
simpler programming of kernels, but is much slower. An
obvious future work item would be to optimize the naive
OpenCL kernels and make use of shared/texture memory.
Even with this simple approach, we saw over an order of
magnitude improvement in the running time from the ref-
erence Matlab implementation.

References
[1] CUDA C Programming Guide, May 2011.

[2] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black,
and R. Szeliski. A database and evaluation methodol-
ogy for optical flow. International Journal of Com-
puter Vision, 92:1-31, 2011. 10.1007/s11263-010-
0390-2.

(3]

B. Horn and B. Schunck. Determining optical flow.
Artificial intelligence, 17(1-3):185-203, 1981.

[4] B. Lucas, T. Kanade, et al. An iterative image regis-
tration technique with an application to stereo vision.
In International joint conference on artificial intelli-

gence, volume 3, pages 674-679. Citeseer, 1981.
(51

Y. Mizukami and K. Tadamura. Optical flow compu-
tation on compute unified device architecture. In Im-
age Analysis and Processing, 14th International Con-

ference on, pages 179-184. IEEE, 2007.

[6] A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cre-
mers. An improved algorithm for tv-1 1 optical flow.
Statistical and Geometrical Approaches to Visual Mo-

tion Analysis, pages 23-45, 2009.

